
Text Mining in R
Section: Exploratory Text Analysis

Nicolas Pröllochs
University of Giessen

nicolas.proellochs@wi.jlug.de

mailto:nicolas.proellochs@wi.jlug.de

Agenda

1 Exploratory text analyis: Learn how to gain an initial understanding of text data

2 Tidy text analysis: Learn how to perform text analysis in a “tidy” way using tidytext

3 Corpus analyis: Understand how to explore text corpora and perform tf-idf document weighting in R

Text Mining in R 2

Exploratory text analysis

I Text mining

I Extracting relevant information or knowledge
from text data

I Not always sure what we are looking for (until we
find it)!

I Exploratory text analysis

I Gain an initial understanding of the text data

I Clean and preprocess the texts

I Identify patterns and data characteristics

Exploratory text analysis serves as a first step towards further statistical analysis (e. g. sentiment
analysis, text classification, . . .)

Text Mining in R 3

Working with text

I Text data can come from various sources:

I Websites

I Books

I Social media

I Databases

I Digital scans of printed materials

I . . .

I Typically in unstructured format (data without a pre-defined data model)

Approximately 90% of the world’s data is held in unstructured formats (Source: Oracle)

Text Mining in R 4

This is text data

<div class="js-tweet-text-container">
<p class="TweetTextSize
TweetTextSize--normal js-tweet-text
tweet-text" lang="en"
data-aria-label-part="0">The Economy is
doing really well. The Federal Reserve can
easily make it Record Setting! The question
is being asked, why are we paying much more
in interest than Germany and certain other
countries? Be early (for a change), not
late. Let America win big, rather than just
win!</p>
</div>

Text Mining in R 5

This is text data too

The Project Gutenberg EBook of Household
Tales by Brothers Grimm
##
Copyright laws are changing all over the
world. Be sure to check the
copyright laws for your country before
downloading or redistributing
this or any other Project Gutenberg
eBook.
##
This header should be the first thing
seen when viewing this Project
Gutenberg file. Please do not remove it.
Do not change or edit the
header without written permission.
##
Please read the "legal small print," and
other information about the
...

Text Mining in R 6

Text data

I Texts are stored as raw character strings

I Text string contains tokens, which is a semantically meaningful unit of text

I Tokens can be words, sentences, paragraphs, etc.

I Example: Peter Pan by J. M. Barrie

Token type Count
Documents 1
Paragraphs 4464
Sentences 6044
Words 47707

Need to transform the raw string into tokens to perform meaningful text analysis

Text Mining in R 7

Tidytext R-package

I Contains tidy tools for quantitative text analysis, including tokenization, basic text summarization,
sentiment analysis, and text modeling

I Load necessary libraries tidyverse and tidytext to do text analysis

library(tidyverse)
library(tiytext)

Text Mining in R 8

Tidy data

I Tidy format

I Each variable forms a column

I Each observation forms a row

I Each type of observational unit forms a table

I Why?

I Standardized consistent data structure

I Makes it easier to manipulate, model and visualize data

We can easily switch between tidy format and other formats if needed

Text Mining in R 9

Tokenization

I Need to organize text data around tokens

I If the data contains whole documents as a variable and the tokens are words, the data isn’t tidy

I Common steps before text analysis

I Split on white space/punctuation

I Make lower case

I Handling abbreviations

I Maybe put named entities together

I . . .

Tokenization is the process of segmenting running text into a list of tokens (e.g. words or
sentences)

Text Mining in R 10

Creating some text data

I Creating a text corpus consisting of three documents

txt <- c("These are words", "so are these", "this is running on")
document <- c(1, 2, 3)
dat <- tibble(txt, document)
dat

A tibble: 3 x 2
txt document
<chr> <dbl>
1 These are words 1
2 so are these 2
3 this is running on 3

Text Mining in R 11

The unnest_tokens() function

I The function unnest_tokens(tbl, output, input, ...) converts a text column of a
dataframe into tokens

I Parameters:

I tbl is a dataframe

I output is the name of the column to be generated

I input is the column in the dataframe that gets split

unnest_tokens(tbl = dat, output = "tok", input = txt)

unnest_tokens() supports tokenization of words (default), sentences, ngrams, characters,
and regular expressions

Text Mining in R 12

Example: unnest_tokens()

A tibble: 10 x 2
document tok
<dbl> <chr>
1 1 these
2 1 are
3 1 words
4 2 so
5 2 are
... with 5 more rows

I One-token-per-row format

I Punctuation has been stripped

I Words have been converted to lowercase

Our text is tidy now!

Text Mining in R 13

Gathering more data

I Project Gutenberg provides access to the full text of many public domain works

I Access the library via the gutenbergr R-package

library(gutenbergr)
gutenberg_metadata %>%

filter(author == "Shakespeare, William")

A tibble: 317 x 8
gutenberg_id title author gutenberg_autho~ language gutenberg_books~
<int> <chr> <chr> <int> <chr> <chr>
1 100 The ~ Shake~ 65 en Plays
2 1041 Shak~ Shake~ 65 en <NA>
3 1045 Venu~ Shake~ 65 en <NA>
4 1100 The ~ Shake~ 65 en <NA>
5 1101 The ~ Shake~ 65 en <NA>
... with 312 more rows, and 2 more variables: rights <chr>,
has_text <lgl>

Text Mining in R 14

https://www.gutenberg.org/

Gathering more data

I Download book 5314 (“Household Tales by Brothers Grimm”)

full_text <- gutenberg_download(5314)

I Take a glimpse at the book via slice(rows)

full_text %>% slice(1000:1005)

A tibble: 6 x 2
gutenberg_id text
<int> <chr>
1 5314 " \"What rumbles and tumbles"
2 5314 " Against my poor bones?"
3 5314 " I thought 't was six kids,"
4 5314 " But it's naught but big stones.\""
5 5314 ""
... with 1 more row

Text Mining in R 15

Time to tidy your text!

I Word tokenization using unnest_tokens()

tidy_book <- full_text %>%
unnest_tokens(word, text)

tidy_book

A tibble: 287,073 x 2
gutenberg_id word
<int> <chr>
1 5314 the
2 5314 e
3 5314 book
4 5314 was
5 5314 prepared
... with 2.871e+05 more rows

I The book contains 287,073 words

Text Mining in R 16

What are the most common words?

I Calculate word counts via count(var)

I Ouput is a new column n

I If sort = TRUE, the output is sorted in descending order

tidy_book %>%
count(word, sort = TRUE)

A tibble: 8,288 x 2
word n
<chr> <int>
1 the 20176
2 and 14740
3 to 7454
4 he 5954
5 a 5436
... with 8,283 more rows

Most common words are non-characteristic terms without a deeper meaning
Text Mining in R 17

Stopwords

I Stopwords are short function words occurring frequently but with no deep meaning

I Removal of stopwords in order to concentrate on more important words (that are specific to the text)

I Common approach is to use predefined list of stopwords (Examples: the, is, at, which, and)

I Get such a built-in list via get_stopwords()

get_stopwords()

A tibble: 175 x 2
word lexicon
<chr> <chr>
1 i snowball
2 me snowball
3 my snowball
4 myself snowball
5 we snowball
... with 170 more rows

Text Mining in R 18

Filtering stopwords

I Filter stopwords via anti_join()

tidy_book %>%
anti_join(get_stopwords()) %>%
count(word, sort = TRUE)

A tibble: 8,141 x 2
word n
<chr> <int>
1 said 3025
2 thou 1525
3 one 1369
4 went 1181
5 came 1044
... with 8,136 more rows

Text Mining in R 19

Handling contractions

I The function unnest_tokens() does not replace contractions

tidy_book %>% filter(word == "can't")

A tibble: 26 x 2
gutenberg_id word
<int> <chr>
1 5314 can't
2 5314 can't
3 5314 can't
4 5314 can't
5 5314 can't
... with 21 more rows

I Load package textclean

library(textclean)

Text Mining in R 20

Example: Handling contractions

I Example: Replace contractions using replace_contraction()

text <- "I'll go home"
replace_contraction(text, contraction.key = lexicon::key_contractions)

[1] "I will go home"

I replace_contraction() uses a predefined list of contractions

head(lexicon::key_contractions, 5)

contraction expanded
1 'cause because
2 'tis it is
3 'twas it was
4 ain't am not
5 aren't are not

Text Mining in R 21

Handling contractions

I Replace contractions in our book

tidy_book <- full_text %>%
mutate(text = replace_contraction(text)) %>%
unnest_tokens(word, text)

tidy_book %>% filter(word == "can't")

A tibble: 0 x 2
... with 2 variables: gutenberg_id <int>, word <chr>

The textclean package provides additional functions for replacing dates, emojis, emoticons,
etc.

Text Mining in R 22

Word clouds

I The wordcloud R-package allows one to easily visualize the most common words in a word cloud

library(wordcloud)

wc_data <- tidy_book %>%
anti_join(stop_words) %>%
count(word)

wordcloud(wc_data$word, wc_data$n, max.words = 100)

boy
red

woman

girlwilt

standing

day
bird artgod

fellfather

brother

daughter
hand

eyes

world
child

fo
re

stlord
queensitting

castle
youth

hans

ah

dear

evening

thy

gold

ta
ilo

r

king's

door
white

morning
peasant

people

answered

shalt

hast

house
fox

thou

wife

ran

cut

set
poor

horse

fire

laid

called

die
mothercried

huntsman

stood

left

carried

thee

lying

beautiful
leave

table

king
told

bread

bring

brought

golden

time

length

round ground

wood
children

lay

sleep

bed

looked

heart
night

heard

replied

maiden

dead

tree

wolf

found

head
master

home

life
water

son

money

bride

death

ea
t

sat

Text Mining in R 23

Zipf’s law

I Zipf’s law states that the frequency that a word appears is inversely proportional to its rank

term_freq <- tidy_book %>%
count(word, sort = TRUE) %>%
mutate(TotalWords = sum(n),

rank = row_number(),
tf = n / TotalWords)

term_freq

A tibble: 8,267 x 5
word n TotalWords rank tf
<chr> <int> <int> <int> <dbl>
1 the 20176 287331 1 0.0702
2 and 14740 287331 2 0.0513
3 to 7454 287331 3 0.0259
4 he 5955 287331 4 0.0207
5 a 5436 287331 5 0.0189
... with 8,262 more rows

Text Mining in R 24

Zipf’s law

I We indeed observe a constant, negative slope indicating an inversely proportional relationship

term_freq %>%
ggplot(aes(rank, tf)) +
geom_line(size = 1.1, show.legend = FALSE) +
scale_x_log10() +
scale_y_log10()

1e−04

1e−02

10 1000

rank

tf

Text Mining in R 25

Analysis text corpora

I A text corpus is a structured set of texts (e. g. a collection of articles)

I Example: Loading a collection of physics classics

gutenberg_metadata %>% filter(gutenberg_id %in% c(37729, 14725, 13476, 7333))

A tibble: 4 x 8
gutenberg_id title author gutenberg_autho~ language gutenberg_books~
<int> <chr> <chr> <int> <chr> <chr>
1 7333 Side~ Einst~ 1630 en <NA>
2 13476 "Exp~ Tesla~ 5067 en <NA>
3 14725 "Tre~ Huyge~ 5648 en <NA>
4 37729 A Di~ Galil~ 39014 en <NA>
... with 2 more variables: rights <chr>, has_text <lgl>

physics <- gutenberg_download(c(37729,14725,13476,7333), meta_fields = "author")

Text Mining in R 26

Show the most frequent words

I Show the most frequent words

physics_words <- physics %>%
unnest_tokens(word, text) %>%
count(author, word, sort = TRUE) %>% print()

A tibble: 11,219 x 3
author word n
<chr> <chr> <int>
1 Galilei, Galileo the 3760
2 Tesla, Nikola the 3604
3 Huygens, Christiaan the 3553
4 Galilei, Galileo of 2049
5 Tesla, Nikola of 1737
... with 1.121e+04 more rows

I How can we find the words that are most characteristic for each document?

Text Mining in R 27

How can we find characteristic words?

I Example: relativity and the in the document from Albert Einstein

Word Document Frequency Corpus Frequency
relativity 31 31
the 694 11611

I Rare word relativity

I Document containing this term is very likely to be relevant to Albert Einstein

I High weight for rare terms like relativity

I Common word the

I Document containing this term can be about anything

I Very low weight for common terms like the

I Idea: Need a numerical measure that reflects how important a word is to a document in a corpus

Text Mining in R 28

Tf-idf weighting

I Tf-idf weighting

I Best known weighting scheme in information retrieval

I Increases with the number of occurrences of a term in a document

I Increases with the rarity of the term in the collection

I Calculation

1 Term Frequency (tf): Number of times a term t occurs in a document d

2 Document Frequency (df): Number of documents d that contain each term t

3 Inverse Document Frequency idf = log(N/df), where N is the total number of documents

4 Term frequency–inverse document frequency tf − idf = tf × idf

Tf-idf weighting is used frequently by search engines

Text Mining in R 29

The bind_tf_idf function

I bind_tf_idf(tbl, term, document, n) adds tf-idf values to a tidy text dataset

I Parameters:

I tbl is a tidy text dataset with one-row-per-term-per-document

I term is the column containing the terms (word in this case)

I document is the column containing the document IDs (author in this case),

I n is the column containing document-term counts (n in this case)

I Add a column tf-idf using the bind_tf_idf() function

physics_words %>%
bind_tf_idf(word, author, n) %>%
arrange(desc(tf_idf))

Text Mining in R 30

The bind_tf_idf function

A tibble: 11,219 x 6
author word n tf idf tf_idf
<chr> <chr> <int> <dbl> <dbl> <dbl>
1 Huygens, Christiaan refraction 218 0.00569 1.39 0.00789
2 Tesla, Nikola bulb 171 0.00433 1.39 0.00600
3 Galilei, Galileo water 828 0.0206 0.288 0.00593
4 Tesla, Nikola coil 166 0.00420 1.39 0.00583
5 Einstein, Albert theory 67 0.00774 0.693 0.00536
... with 1.121e+04 more rows

I Top tf-idf values are intuitively very characteristic to the authors

Top tf-idf values are not affected by stop words as IDF values of such stop words are very small
(due to their presence in almost every document)

Text Mining in R 31

Visualizing the results

I Plotting the 5 most characteristic words per author using ggplot

plot_physics <- physics_words %>%
bind_tf_idf(word, author, n) %>%
group_by(author) %>%
top_n(5, tf_idf) %>%
ungroup()

ggplot(plot_physics, aes(reorder(word, tf_idf), tf_idf, fill = author)) +
geom_col(show.legend = FALSE) + labs(x = NULL, y = "tf-idf") +
facet_wrap(~ author, ncol = 4, scales = "free") + coord_flip()

Einstein, Albert Galilei, Galileo Huygens, Christiaan Tesla, Nikola

0.000 0.002 0.004 0.000 0.002 0.004 0.006 0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006

fig

frequency

wire

coil

bulb

wave

crystal

movement

ray

refraction

aristotle

equall

grave

hath

water

ether

geometry

euclidean

relativity

theory

tf−idf

Text Mining in R 32

Wrap-up

I Key takeaways

I Text data typically comes in unstructed format

I Exploratory text analysis allows one to gain an initial understanding of the data

I The tidytext R-Package provides tools to perform exploratory text analysis in a “tidy”
way

I Advanced topics

I Sentiment analysis

I Topic modeling

I Text classification & text-based forecasting

I Further reading

I Book: Text Mining with R (O’Reilly, 2017, by J. Silge & D. Robinson)

Text Mining in R 33

	Text Mining

